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Abstract

This paper considers a situation in which students with heterogeneous ability

types are grouped into different competitions for performance ranking. A planner

can group the students and design prize structure in each competition in order to

maximize the weighted total performance subject to a no-child-left-behind require-

ment. We show that, whatever the type-specific weights are, separating – assigning

students with the same ability together – is superior to mixing – assigning students

with different abilities together. Moreover, we also characterize the associated op-

timal prize structures.
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1 Introduction

Consider a school that needs to assign a group of students to different classrooms. Should

the school group students with similar abilities together – a practice known as “tracking”–

so that high ability students are separated from low ability ones, or should the school have

mixed classrooms in which students of different abilities are grouped together? Tracking

was very common in US schools but became less popular in the late 1980s due to the

criticism of trapping students of low socioeconomic status in low-level groups. However,

tracking, often referred to as ability grouping, has returned to the attention of educators

recently. According to Yee (2013), “... of the fourth-grade teachers surveyed, 71 percent

said they had grouped students by reading ability in 2009, up from 28 percent in 1998.”

Different grouping policies can be observed not only over time but also across different

countries. For instance, in Germany, pupils after primary schooling are grouped into three

types of secondary schools to receive training for blue-collar apprenticeships, apprentice-

ship training in white-collar occupations, or training for further education. In contrast,

tracking was explicitly discontinued in China in 2006.1 Not surprisingly, tracking has also

been a controversial topic in the economic literature on education, and there has been a

long debate on this issue from many different perspectives: students’ achievement, equity,

and even morality.2

Lazear (2001) studies tracking when students are awarded according to their absolute

performance. He shows that tracking results in higher total performance than mixing

does. In many competitions, students’ relative performance ranking is also important.

For example, college admission in many countries is based on percentile of students’

exam scores.3 In this paper, we shut down the effect of absolute performance and study

the competition based on relative performance. To our knowledge, this is the first paper

revisiting the question of ability grouping in the new context of contests, in which students

are awarded according to their relative performance ranking.

Specifically, this paper investigates the competitive effects of tracking and asks whether

it enhances students’ performance when their grades or rewards depend on their relative

performance.4 Two features are important to a social planner, e.g., a school.

First, non-performance is not desirable. For example, the No Child Left Behind Act

of 2001 requires schools in US to guarantee that nearly all students meet some minimum

1Policies that forbade tracking in schools started in the 1990s, and a national law was passed in 2006.
In contrast, tracking remains common in Chinese universities.

2See, for instance, Loveless (2013).
3For example, college admission in Australia is based on Australian Tertiary Admission Rank, which

is a percentile rank.
4We do not consider the equity issue nor the effects of tracking on the quality of instruction. If

students are tracked, the classes are more homogeneous and therefore they could be easier to teach. See,
for instance, Duflo et al. (2011).
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skill levels in reading, writing, and arithmetic.

Second, the planner may weigh students of different abilities differently. For example,

a school may care more about high ability students’ performance than others. As a

result, it is important to examine how different weights affect the comparison of tracking

and mixing. There are empirical evidences showing that ability grouping may benefit

students with higher abilities but hurts those with lower abilities (e.g. Ding and Lehrer

2007). Then, if a planner attaches more weight to the lower-ability students, it seems

optimal to mix students of different ability levels. Our results show otherwise.

In this paper, we apply insights from contest theory to analyze ability grouping. Our

model builds on Siegel’s (2010) model of all-pay contests by introducing heterogeneous

prizes, performance spillovers and a planner who can allocate students and prize money

across contests. Specifically, suppose that there is a fixed amount of prize money and

a group of students with different ability types. The students of the same type have

the same constant marginal cost of performance/effort. We do not distinguish effort and

performance in this paper.5 A lower cost of performance represents a higher ability. A

planner can assign the students into any number of contests and divide the money as

potentially heterogeneous prizes in the contests.

In each contest, the students choose their performance simultaneously. The player

with the highest performance receives the highest prize, the player with the second highest

performance receives the second prize, and so on. There may be performance spillovers

within a contest. That is, a player may benefit from other students’ performance in

the contest. The no-child-left-behind requirement imposes a restriction on the planner,

so the planner has to ensure that as an equilibrium outcome, no student chooses non-

performance with positive probability. The planner attaches type-specific weights to the

player’s performance, and wants to maximize the weighted total performance subject to

the no-child-left-behind requirement. Our main result is:

Proposition 1. Given any weights and the no-child-left-behind requirement, the weighted

total expected performance is maximized only if the students are separated.

Therefore, with a well-designed award system, tracking/separating – assigning stu-

dents with the same ability together – is always superior to mixing – assigning students

with different abilities together. Moreover, this result is independent of how the planner

weighs different ability groups. Specifically, with a well-designed award system, separat-

ing is always optimal, even if the school cares little about the high ability students.

In contest theory, it is a well-known result that if participants’ abilities are symmetric

5In other words, we assume a deterministic relation between effort and performance such that one
unit of effort leads to one unit of performance.
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and commonly known, intense competition drives the participants’ payoffs to zero (e.g.,

Hillman and Riley 1989). This paper applies the insight to the context of ability grouping,

and argues that by separating the students according to their abilities, we can introduce

intense competition among asymmetric players. In addition, we generalize the insight to

accommodate the new features arising from the environments of ability grouping, such as

spillovers, the no-child-left-behind requirement, and heterogeneous weights for students.

We also show that that such intense competition cannot be implemented in contests

with mixed student types if there are spillovers or the no-child-left-behind requirement.

As a result, for any set of contests with mixed students, there always exist contests of

separated students with at least as much total expected performance for each ability

type and a higher total expected performance for at least one ability type. In other

words, having separated students dominates having mixed students in terms of the total

expected performance of different types.

It is important that the planner can choose prize structures while grouping the stu-

dents. If the planner cannot choose the prize structures, Xiao (2016) shows, in an example,

that separating may result in higher or lower total expected performance than mixing.

We also characterize the optimal prize structures.

There are several challenges that we have to overcome in order to establish these

results. First, with asymmetric players and heterogeneous prizes, the equilibrium of an

all-pay contest may involve complicated mixed strategies (e.g., Bulow and Levin 2006,

González-Dı́az and Siegel 2013 and Olszewski and Siegel 2016). To our knowledge, equi-

librium characterization for general asymmetric contests with heterogeneous prizes is still

an open question. The techniques in this paper allows us to circumvent the difficulty and

characterize the optimal way to group players.

Second, there could be multiple equilibria. Given a particular prize structure, equi-

librium selection may change the comparison between separating and mixing (e.g., Xiao

2016). The results in this paper apply to all equilibria, and therefore are robust to

equilibrium selection.

Finally, the generality of the model also imposes extra challenges. The current paper

does not restrict the number of contests, the prize structures, or the player composition in

contests, which means the planner has to compare a large number of choices. Moreover,

this paper accommodates a very general objective function for the planner: she can

assign asymmetric type-specific weights to the players’ performance, and she can impose

different minimal performance requirements on different types.

Literature The works on affirmative action discuss separating students according to

their race, gender, nationality, etc. For example, Fu (2006) uses a contest model to
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study student competition and shows that, to maximize its incoming students’ weighted

total scores, a college may adopt an admission rule that favors the minority. Such a

policy can be viewed as a handicapping rule in the same contest. In this paper we

adopt the same objective to maximize the weighted total performance, but we study a

different question. We study how to allocate students of different abilities across different

contests. Bodoh-Creed and Hickman (2018) study different affirmative action policies

on college admissions, where students have private information on their performance

costs. One of the policies utilizes a quota system, in which the two groups compete

separately for their respective reserved seats. The competition effort in their model is

wasteful except signaling the students’ ability. In contrast, the effort is not wasteful in

this paper, and the social planner wants to maximize students’ learning effort. Similar to

our paper, Olszewski and Siegel (2019) use all-pay contests to study competition among

students. They show that the optimal performance-disclosure policies involves pooling,

which assigns the same score to a subset of students with different performances. Their

paper focuses on policies in a single contest, while we focus on policies that divide students

into different contests to compete.

Studies on peer effects also discuss grouping players across competitions (e.g., Board

2009 and Fruehwirth 2013). The players’ payoffs in these papers depend on their abso-

lute performance, while we consider a different situation in which students are awarded

according to their relative performance, or the ranking of their performance.

There is a big literature on contests, and this paper’s main difference from the liter-

ature lies in the new features arising from the environments of ability grouping, such as

heterogeneous weights to different ability types and the no-child-left-behind requirement.

Among them, some study player allocations with a fixed prize structure. In contrast,

this paper considers the joint decision on prize structures and student allocations. For

example, in an all-pay auction model (with a single winner), Baye et al. (1993) show that

a politician may extract higher total rent by excluding the lobbyists, who have higher

valuations of winning, from the competition. Parreiras and Rubinchik (2020) study allo-

cations of ex ante asymmetric players across two all-pay auctions. They find that if the

players are similar, the total revenue is maximized by two equal auctions separating the

players of higher costs from those of lower costs.

The following papers study the effect of merging prizes and players in small contests

into a grand contest. For example, Moldovanu and Sela (2006) compare different ways to

group ex ante symmetric players across contests. They find that total expected effort is

maximized by a grand contest including all players, while the expected highest effort is

maximized by splitting players into multiple contests and letting winners of each contest

compete in a final contest. Fu and Lu (2009) find that merging multi-winner contests
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of symmetric players can increase total expected effort. In contrast, this paper considers

players with asymmetric abilities. The asymmetry is crucial as we are considering whether

players should be separated according to their abilities.

The literature on status competition anaylizes the optimal way to divide players into

different status categories when the players’ payoffs depend directly on their status (see

e.g., Moldovanu et al. 2007 and Dubey and Geanakoplos 2010). In our paper, performance

ranking does not affect players’ payoffs directly. Instead, the payoffs depend on the prizes

awarded according to the players’ ranking.

The remainder of the paper is organized as follows. Section 2 introduces the model

without spillovers. Section 3 presents the main results on optimal grouping and optimal

prize structures. Section 4 generalizes the results to the case with spillovers. Section 5

discusses several extensions.

2 Model

There is one unit of prize money and a finite set N of students, or players. The players

are of T ≥ 2 different types, and there are nt players of each type t ∈ {1, 2, ..., T}. We

assume nt ≥ 2 for all t, so there are similar players of each type.6 Players of t-type have

the same marginal cost of performance/effort, ct. We do not distinguish between effort

and performance. Without loss of generality, we assume 0 < c1 < c2 < ... < cT .

The decision of a school, or a planner, has two parts: assigning the players into any

number of contests, and dividing the prize money as prizes for each of the contests.

Specifically, the planner’s choices can be represented by a partition of the players P and

a prize structure V .7 The partition P is a family of non-empty subsets of N such that

N is a disjoint union of the subsets. Suppose partition P consists of M sets, then we

have P = {P 1, ..., PM}. The prize structure V is a family of vectors {v1, ...,vM}, where

for any m = 1, ...,M , the vector vm ∈ [0, 1]|P
m| and |Pm| is the number of players in the

set Pm. A zero entry of vm means one of the prizes is zero. Therefore, the partition P
and prize structure V characterize the M contests. In particular, the subset Pm ⊂ N

is the set of players assigned to contest m, and vm represents the prizes in contest m.

Throughout the paper, the superscripts are indexes of contests. Notice that there is no

restriction on the number of contests, so the planner may assign all the players into one

6This assumption is relaxed in Section 5.2.
7Allowing the planner to choose prizes does not preclude the possibility that players’ values of ranking

are partly determined outside the tournaments. For instance, if the planner wants to have a first prize
of $200 thousand and she knows that the champion will also receive an endorsement deal worth $100
thousand, then she can simply award the difference of $100 thousand to the champion. A similar
argument applies when a school has a budget for scholarships.
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contest, that is, P = {N}.
Next, we describe the competition in each contest. In a contest characterized by its

player set Pm and prize vector vm, all the players in Pm choose their performance/effort

levels in [0,+∞) simultaneously. The prizes are monetary, so a prize has the same value

to all players. However, players with different performance rankings may receive prizes of

different monetary values. Specifically, the player with the highest performance receives

the highest prize in vm; the player with the second highest performance receives the

second highest prize in vm; and so on. In the case of a tie, the prizes are allocated

randomly such that no tying player loses with certainty.8 If a player wins a prize, his

payoff is his prize net of his cost of performance. If a player wins no prize, his payoff is

zero minus his cost of performance. All players are risk neutral. A profile of strategies

constitutes a Nash equilibrium if each player’s (mixed) strategy assigns a probability of

one to the set of his best responses against the strategies of other players.

The planner’s objective has three parts. First, the planner attaches weight αt to

a t-type player’s performance, and she wants to maximize the weighted total expected

performance. We assume that αt ∈ (0, 1) and
∑T

t=1 αt = 1. The weight αt represents the

relative importance of t-type players’ performance to the planner. Let α = (α1, ..., αT )

be the vector of weights. Second, the planner has a no-child-left-behind requirement.

Let sit be the performance of player it of t-type. Then, the planner wants to ensure

sit > 0 almost surely (a.s.) for every player it ∈ N . Note that the requirement is on

the planner’s objective instead of players’ choice. This means that the planner has to

provide well-designed incentives so that the players do not choose non-performance even

if they could. Third, the planner has a no-extreme-prize-allocation requirement: the

total expected prize won by t-type players is at least W t > 0.9 This requirement may

represent the concern that students with socioeconomic advantages end up winning too

many scholarships.10 Because sit is restricted to an open set, this requirement ensures the

existence of an optimal prize structure.11 In addition, we assume
∑T

t=1W t ≤ 1, otherwise

the requirement can never be satisfied.

We introduce some definitions below that are important in later analysis. We say a

partition and prize structure pair (P ,V) is feasible if the total prize in V is no more than

1. Denote by Φ as the set of all feasible pairs of partition and prize structure. Given

8In many tournaments (for example, in golf), ties are resolved by sharing the prizes. As an example,
if two players tie with the second-highest performance, then each receives the average of the second and
third prize. Our formulation allows this kind of sharing.

9Our analysis applies if we impose a more restrictive version of no-extreme-prize-allocation require-
ment: the total prize won by t-type players is at least W t almost surely.

10See, e.g., Saul (2012).
11Remark 2 discusses the consequence of removing the no-child-left-behind or no-extreme-prize-

allocation restriction.
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any feasible (P ,V), let E[sit ] be the expected performance of player it of t-type in an

equilibrium. Define a correspondence Π : Φ→ 2R+ such that

Π(P ,V) =

{
T∑
t=1

(
αt

nt∑
it=1

E[sit ]

)}

where 2R+ is the power set of R+. Note that Π(P ,V) may contain multiple values if

there are multiple equilibria. We say (P∗,V∗) maximizes Π(P ,V) if inf Π(P∗,V∗) ≥
sup Π(P ,V) for any other feasible (P ,V), where the infimum and supremum are taken

over the multiple values in Π(P∗,V∗) or Π(P ,V).

The planner chooses partition P and prize structure V to maximize the weighted total

expected performance subject to the no-child-left-behind and no-extreme-prize-allocation

requirements. Therefore, her problem is

max
(P,V)∈Φ

Π(P ,V) (1)

s.t. sit > 0 a.s. for every it ∈ N in any equilibrium (2)

Wt ≥ W t for every t in any equilibrium (3)

where Wt is the total expected winnings of the t-type players. Any violation of restriction

(2) or (3) is unacceptable to the planner. We say (P∗,V∗) is optimal if (P∗,V∗) maximizes

Π(P ,V) subject to (2) and (3).

3 Optimal Grouping

If a contest has only one player, his equilibrium performance level must be zero, which

violates (2). Therefore, we only need to consider contests with at least two players. The

planner is said to separate the players if each contest contains players of the same type.

Otherwise, we say the planner mixes the players. In order to separate the players, the

planner cannot have fewer than T contests, but she can have more than T by splitting a

larger contest into smaller ones. The main result of this paper is as follows.

Proposition 1 Given any weights and the no-child-left-behind requirement, the weighted

total expected performance is maximized only if the players are separated.

In the remainder of this section, we first prove Proposition 1 through a sequence of

lemmas, then specify the associated optimal prize structures in Proposition 2. The lemma

below ensures equilibrium existence.
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Lemma 1 In each contest, there exists no Nash equilibrium in pure strategies, but there

exists a Nash equilibrium in mixed strategies.

Siegel (2010) establishes equilibrium existence for contests with homogeneous prizes,

and his proof is readily adapted to prove the above lemma, so we omit its proof. Because

of the mixed strategies in an equilibrium, we always discuss a player’s expected payoff

instead of his payoff. Therefore, we simply say “payoff” below instead of “expected

payoff”.

One of the challenges is that there may be multiple equilibria in a contest. Our

method overcomes this challenge by relying on properties true for all equilibria. Lemmas

2-5 below present four such properties. Lemma 2 characterizes a property of atoms in

one’s mixed strategy, then we use this property to prove Lemma 3.

Lemma 2 Suppose a player has an atom at performance level s in an equilibrium, that

is, he chooses s with strictly positive probability. Then, he receives the lowest prize in the

contest with certainty by choosing this performance level.

The proof is in the appendix. Before discussing the next equilibrium property, we

need to introduce some notation. Consider a contest with a player set Pm and a prize

vector vm. We use a cumulative distribution function Gm
i : [0,+∞)→ [0, 1] to represent

player i’s strategy in an equilibrium. If Gm
i assigns probability 1 to a single performance

level si, it represents a pure strategy si. A strategy’s support is the smallest closed set

that receives probability 1 according to the strategy. Let s̄mi be the highest performance

in the support of Gm
i . In the contest, given other players’ strategies Gm

−i ≡ (Gm
j )j∈Pm\{i},

player i’s expected value of prizes by choosing si is denoted as W (Gm
−i(si),v

m), which is

also referred to as his expected winnings. The lemma below provides a property of the

expected winnings that is useful to prove our main result.

Lemma 3 Consider a contest with a player set Pm and a prize vector vm, in which not

all the prizes are identical. Then, in any equilibrium,

W (Gm
−i(s̄

m
j ),vm) ≥ W (Gm

−j(s̄
m
j ),vm) (4)

Proof. There are two possibilities. First, suppose s̄mj = 0. It means player j chooses

non-performance with probability 1, then Lemma 2 implies that player j receives the

lowest prize with certainty. Hence, W (Gm
−i(s̄

m
j ),vm) cannot be lower than j’s expected

winnings in the equilibrium. That is, inequality (4) holds.

Second, suppose s̄mj > 0. Lemma 2 implies that no player chooses s̄mj with positive

probability in the equilibrium. Therefore, if player i chooses performance s̄mj , his per-

formance is higher than j’s with certainty, i.e., by choosing s̄mj player i beats j for sure.
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In addition, they face the same competition from the other players. Hence, player i’s

expected winnings by choosing s̄mj are no less than j’s expected winnings by choosing s̄mj .

That is, inequality (4) holds.

Hillman and Riley (1989) show that if players are identical, the competition in an

all-pay auction is so intense that each player receives zero payoff. The following lemma

generalizes the insight to any prize structure. Since a similar result is established by

Barut and Kovenock (1998), we omit the proof here.

Lemma 4 If all the players in a contest are identical, each player’s payoff in any equi-

librium is the value of the lowest prize. Moreover, if all the prizes except the lowest are

positive, there is a unique equilibrium and the equilibrium is symmetric.

Hillman and Riley also show that if the players are not identical, the highest ability

participant may have positive rent. However, this insight may not hold in some contests.

Example 1 below illustrates such a contest.

Example 1 Consider a contest in which four players compete for a prize of value 1.

The players’ marginal costs are c1 = 1, c2 = 1, c3 = 2, c4 = 2, so the contest has mixed

players but some participants are identical. The contest has a unique equilibrium, in

which players 1 and 2 uses strategies G1(s) = G2(s) = s and players 3 and 4 choose pure

strategies s3 = s4 = 0. All four players have zero equilibrium payoffs.

Note that players 3 and 4 choose non-performance, so the no-child-left-behind re-

quirement is violated. This is because the contest has only one prize. As we show in

Proposition 2 below, multiple prizes are important for optimal prize structures.

The result below provides a condition under which the property of positive rent holds

in contests with any composition of ability types.

Lemma 5 Consider a contest in which not all players have the same type and not all

prizes have the same value. Then, in any equilibrium, in which each player’s performance

is positive a.s., at least one player’s payoff is higher than the lowest prize.

Proof. Suppose players i and j have different costs, with ci > cj. Since the payoffs

cannot be lower than the lowest prize, it is sufficient to show that players i and j have

different payoffs. Assume otherwise that ui = uj, where ui and uj are i and j’s payoffs

in an equilibrium. In the equilibrium, if every player’s performance is positive a.s., then

the highest performance in the support of i’s strategy is positive, i.e., s̄i > 0. According

to Lemma 3, player j’s expected winnings at s̄i are no lower than i’s at s̄i. Therefore, if

player j deviates to s̄i > 0, his expected winnings are no lower than i’s, but his cost is
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lower than i’s. Hence, the deviation results in a payoff of j that is higher than ui. This

is a contradiction because i and j have the same payoff by assumption.

Next, we proceed to prove Proposition 1. Given any equilibrium, denote by St ≡∑nt

i=1 E[sit ] as the total expected equilibrium performance of all t-type players. Intu-

itively, for any (P ,V) that mixes players and satisfies (2) and (3), we first introduce

another pair (P ′,V ′) that separates players and satisfies (2) and (3). Then, we verify

that the performance outcome (S1, ..., ST ) with mixed players is dominated by the out-

come (S ′1, ..., S
′
T ) with separated players in the sense that St ≤ S ′t for all t and St < S ′t for

some t. This shows that separating is superior to mixing for any type-specific weights.

Proof of Proposition 1. Consider a partition and prize structure pair (P ,V) satisfying

(2) and (3), where the players are mixed. Take an equilibrium in each contest. Since

restriction (2) is satisfied, we must have E[sit ] > 0 for any it in the equilibrium. Given

the equilibria, let (S1, ..., ST ) be the performance outcome, Ut be the t-type players’ total

payoff, and Wt be their total expected winnings. Requirement (3) implies Wt ≥ W t.

For each player, his payoff equals his expected winnings minus the cost of his expected

performance, so we have Ut = Wt − ctSt, or

St = (Wt − Ut)/ct (5)

Recall that (2) is satisfied, so in each contest, not all prizes are identical. In addition,

note that Ut is the total payoff when the players are mixed, so Lemma 5 implies that

Ut > 0 for some t.

Consider another pair (P ′,V ′) such that P ′ separates the players into T contests, so

each contest contains all the players of a particular type. In addition, suppose V ′ assigns

prizes of total value Wt to the contests with t-type players and all the prizes except the

lowest are positive. Notice that the total winnings of t-type players remains the same at

Wt, so (P ′,V ′) satisfies requirement (3). In addition, since all the players in a contest

are identical and all the prizes except the lowest are positive, Lemma 4 implies that the

contest has a unique equilibrium and the equilibrium is symmetric. Thus, (P ′,V ′) also

satisfies requirement (2).

Recall that in V ′, the lowest prize is zero in every contest, so Lemma 4 implies that

all players have zero payoffs. Similar to (5), in the unique equilibrium, the total expected

performance of t-type players is S ′t = (Wt − 0)/ct. Comparing to (5), we obtain S ′t ≥ St

for all t. Recall that Ut > 0 for some t, so S ′t > St for some t. Hence, the performance

outcome (S ′1, ..., S
′
T ) dominates (S1, S2, ..., ST ).

Hence, for any prize structure and any partition (P ,V) that satisfy requirement (2)

and (3) and mix players, we find another partition and prize structure (P ′,V ′) such that
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requirement (2) and (3) are satisfied, the outcome is unique and the outcome dominates

that associated with (P ,V). As a result, the weighted total expected performance is

never maximized if the players are mixed.

Remark 1 Proposition 1 is robust to small idiosyncratic shocks in the costs. Specifically,

suppose player it of t-type has a marginal cost ct + εit > 0, where εit represents the

idiosyncratic shock and is commonly known. Then, there exists an ε > 0 such that

Proposition 1 remains true if maxit∈N |εit | < ε. See Proposition 7 in the appendix.

Remark 2 If the planner does not have the no-child-left-behind requirement sit > 0 a.s.,

then separating becomes weakly better than mixing. Specifically, the maximum weighted

total expected performance can be achieved if the players are separated, and it may also

be achieved if players are mixed. See Example 2. We can also obtain Proposition 1 if we

replace the no-child-left-behind requirement by an assumption that each contest contains

distinct prizes, which means that the planner has to award higher performance with a

higher prize.

According to Proposition 1, it is never optimal to assign only one player to a contest

or to have a contest containing all the players. It is also worth mentioning that there is

more than one way to separate the players. For instance, suppose there are two H-type

players and four L-type players. The planner can separate the players in two ways. She

can have two contests with all the H-type players in one and all the L-type players in the

other. Alternatively, she can have one contest with all the H-type players and two other

identical contests, each with two L-type players. Proposition 2 below implies that the

optimal performance outcome remains the same across the different ways of separating.

Now let us consider the optimal prize structure. As a result of Proposition 1, we

only need to find the optimal prizes for separated players. According to Lemma 4, if we

transfer value from the lowest prize to the higher prizes in a contest, the total payoff in

the contest decreases, therefore the total expected performance increases because of (5).

Hence, the optimal lowest prize should be zero in every contest, then all players should

have zero payoffs. Therefore, equation (5) implies that the total expected performance

of t-type players is Vt/ct, where Vt is the total value of prizes in the contests containing

t-type players. Note that, if the players are separated, the distribution of prize money

within a contest has no effect on the total expected performance in the contest as long

as all the prizes except the lowest remain positive.12 As a result, the planner’s problem

12In different setups where the participants’ costs are private information, allocation of prizes would
affect the equilibrium performance. See, for example, Moldovanu et al. (2007) and Liu et al. (2018).
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(1) becomes a linear programming problem

max
V1,..,VT

∑
t

(αtVt/ct) (6)

s.t.
∑
t

Vt = 1

Vt ≥ W t for every t

If αt/ct < αt′/ct′ for some t′ 6= t, it is optimal to minimize Vt, so Vt = W t. Based on

the analysis above, the proposition below characterizes the optimal prize structures that

solve the planner’s problem.

Proposition 2 A prize structure is optimal for separated players if and only if both of the

following conditions hold: i) all the prizes except the lowest are positive in each contest,

ii) the total value of prizes in the contests of t-type players is Vt = W t if αt/ct < αt′/ct′

for some t′ 6= t.

Remark 3 A single prize, as in an all-pay auction, is not optimal if a contest contains

more than two players. For instance, if there are three H-type players and two L-type

players, the only way to separate them is grouping all the H-type players in one contest

and both L-type players in another. Then, if we assign a single prize in the contest

with three H-type players, there exists an equilibrium in which a H-type player chooses

non-performance. Therefore, the no-child-left-behind requirement is violated.

Recall that a performance outcome (S1, ..., ST ) specifies the total expected perfor-

mance for types t = 1, ..., T . There may be multiple optimal prize structures, but they all

result in the same performance outcome. Moreover, according the proof of Proposition

1, given an optimal prize structure and separated players, there is a unique equilibrium

in each contest. Therefore, there is a unique performance outcome associated with all

optimal prize structures.

So far, we have demonstrated that for separating to be optimal, it should be accom-

panied with associated optimal prize structures. The share of the budget that is used

to motivate the players of t-type is weakly increasing in the weight αt. If the planner

cannot choose the prizes freely, mixing could actually be better than separating. See, for

example, Proposition 10 of Xiao (2016).

If the planner does not have the restriction of sit > 0 almost surely, separating becomes

weakly better than mixing, which is illustrated in Example 2.

Example 2 Suppose there are two players with c1 and two with c2, where c1 < c2. We

also assume α1 = α2, so the planner wants to maximize the total expected performance.
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If we put the two players with c1 in one contest and the other two in another contest,

and if we allocate all the budget to a single prize in the contest with marginal cost c1,

the weighted total expected performance is maximized. Moreover, both players with c2

choose non-performance. However, the total expected performance can also be maximized

by mixing the players. If we put all the players in one contest and allocate the budget

to a single prize, the two players with c1 compete for the prize, and the other two choose

non-performance. Therefore, even if the players are assigned to the same contest, they

compete as if they are separated. As a result, the total expected performance is also

maximized if the players are mixed.

4 Performance Spillovers

Spillovers are generally difficult to analyze, especially for asymmetric players.13 Here,

we follow the literature of aggregate games to introduce additively separable spillovers.

More precisely, consider a contest with a set of players Pm and a vector of prizes vm.

Let sm = (smj )j∈Pm be a vector of performance levels. If a player i’s performance smi is

the kth highest in sm, his payoff is ui(s
m) = vmk − (cis

m
i − µi

∑
j 6=i s

m
j ), where player j’s

performance reduces player i’s cost of performance by µis
m
j . Notice that a special case

is ui(s
m) = vmk − ci(smi − s̄m), where s̄m is the average performance. This special case is

an aggregate game with linear structure. Linear models with aggregate performance are

widely used in empirical studies of spillovers in innovation (e.g. Audretsch and Feldman

1996), workplaces (e.g. Mas and Moretti 2009) and education (e.g. Angrist 2014). Ace-

moglu and Jensen (2013) provide a theoretic study on spillovers through the average or

aggregate action in more general competitions.

We assume µi ≥ 0 for all i, so a player’s higher performance does not make another’s

performance more costly. In addition, we assume µi is type-specific. That is, if a player

i is of t-type, then µi = µt. We refer to µ = (µ1, ..., µT ) as the levels of performance

spillovers. The parameter µt measures how strongly the other players’ performance affect

a t-type player, and it may be different across types. For example, if µL > µH = 0, the

L-type players’ performance does not affect the H-type players’ performance cost, but

the H-type players’ performance makes the L-type players’ performance less costly. If

µt = 0 for all t, then the setup reduces to that in Section 2.

The following example demonstrates how the spillovers change the equilibrium in a

contest.

Example 3 Consider contest with a prize of value 1 and two players with marginal costs

c1 = 1 and c2 = 2. In the case of winning, the payoff is ui = 1− cisi + µsj for player i.

13See Baye et al. (2012) for the case of symmetric players.
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The equilibrium strategies are G1(s1) = 2s1 for player 1 and G2(s2) = 1/2 + s2 for player

2, which are independent of spillover parameter µ. In contrast, the equilibrium payoffs

are u1 = 1/2 + µ/8 for player 1 and u2 = µ/4 for player 2, which are increasing in µ.

This is because one player’s payoff may come from others’ performance.

It seems convenient that the equilibrium strategies do not change after the introduction

of spillovers. However, even in the case of no spillovers, we do not know the equilibrium

strategies or the number of equilibria in general. Our approach relies on equilibrium

payoffs, but the payoffs differ from the case without spillovers as Example 3 illustrates.

Specifically, the properties on equilibrium payoffs in Lemmas 4 and 5 no longer hold.

Despite these differences, we generalize below the results in Propositions 1 and 2 to the

case with spillovers.

The following lemma is a counterpart of Lemma 1 and establishes equilibrium exis-

tence.

Lemma 6 In each contest with performance spillovers, there exists no Nash equilibrium

in pure strategies, but there exists a Nash equilibrium in mixed strategies.

Proof. Consider a contest with a player set Pm and prize vector vm. If there are no

spillovers, Lemma 1 implies that there is an equilibrium in mixed strategies. Denote the

equilibrium as Gm. Given others’ strategies in this equilibrium, player i’s payoff from

choosing si is W (Gm
−i(si),v

m)− cisi. Consider a different contest with the same players

and prizes but with spillovers. In this contest, given others’ strategies Gm
−i, player i’s

payoff from choosing si becomes W (Gm
−i(si),v

m) − cisi + µi

∑
j 6=i E[sj], where E[sj] is

player j’s expected performance given his mixed strategy Gm
j . Notice that because of

the spillovers, a player’s payoff increases by µi

∑
j 6=i E[sj], which is independent of his

performance. Thus, Gm is also an equilibrium in the contest with spillovers. Therefore,

an equilibrium in the contest without spillovers is also an equilibrium in the contest with

spillovers. The converse is also true by the same argument. Hence, fix the player set Pm

and prize vector vm, a strategy profile is an equilibrium in the contest with spillovers if

and only if it is an equilibrium in the contest without spillovers. Hence, we establish a

strategic equivalence between the two contests.

Due to the strategic equivalence, Lemma 1 also ensures equilibrium existence in the

presence of spillovers. We prove below that the contest with spillovers has no equilibria

in pure strategies. Suppose otherwise that there is an equilibrium in pure strategies.

Then, according to the strategic equivalence, the pure strategy equilibrium in the contest

with spillovers remains an equilibrium in the contest without spillovers. This contradicts

Lemma 1.
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As a result of the strategic equivalence established above, Lemmas 2-3 remain true in

contests with spillovers, otherwise, in a contest without spillovers, there is an equilibrium

violating Lemma 2 or 3. For consideration of space, we omit the proofs for the lemmas’

generalization.

Because a player can benefit from others’ performance in the presence of spillovers,

Lemmas 4 and 5 no longer hold. Instead, we obtain Lemmas 7 and 8, which serve similar

roles of Lemmas 4 and 5 in the proof of Proposition 1. Consider a contest (Pm,vm) with

a player set Pm and prize vector vm. Let vm be the lowest prize in vm and |Pm| be the

number of players in the contest. Moreover, given any equilibrium in the contest, denote

the total expected performance as Sm and the total value of prizes as V m.

Lemma 7 Consider a contest (Pm,vm) with spillovers. If all the players in the contest

are of t-type, then Sm = (V m − vm|Pm|)/ct in any equilibrium.

The omitted proofs in this section are in the appendix. Note that, with spillovers,

the equilibrium payoff is ut = vm + µt

∑
j 6=i E[sj] in contrast to the payoffs ut = vm in

Lemma 4. However, Lemma 7 shows that Sm = (V m− vm|Pm|)/ct, which is also implied

by Lemma 4, remains true here. The lemma below generalizes Lemma 5 to the case of

spillovers.

Lemma 8 Consider a contest (Pm,vm) with spillovers. If not all the players are of

the same type and not all the prizes are of the same value, then in any equilibrium,

ui ≥ vm +µi

∑
j 6=i E[sj] for all players, and the inequality is strict for at least one player.

Notice that if µi = 0 for all players, there are no spillovers and the above lemma

reduces to Lemma 5. Given the above lemmas, we can present the main result in this

section, which generalizes Proposition 1 to the case of spillovers.

Proposition 3 Given any weights α and any levels of performance spillovers µ, the

weighted total expected performance is maximized only if the players are separated.

Due to the strategic equivalence, Proposition 2 also characterizes the optimal prize

structures in the case of spillovers.

5 Extensions

5.1 Minimal Performance Requirements

In the previous sections, if W t, the minimum total prize won by t-type players, is close

to zero, a t-type player’s expected performance could also be close to zero. This section
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considers an additional objective of the planner to avoid the small expected performance.

In particular, we assume W t = 0 and replace the no-child-left-behind requirement sit > 0

a.s. by E[sit ] ≥ rt for some rt > 0. That is, a t-type player’s expected performance

should be at least rt > 0 in any equilibrium. Note that r1, ..., rT need not be the same.

As a result, the restrictions in (2) and (3) are replaced by E[sit ] ≥ rt for it = 1, ..., nt

and t = 1, ..., T . If
∑

t ntrt/ct > 1, the minimal levels for the expected performance can

never be achieved, because the total cost of achieving the minimal levels exceeds the total

value of the prizes. Therefore, we assume
∑

t ntrt/ct ≤ 1. The following result extends

Proposition 1 to accommodate the minimal requirements of performance.

Proposition 4 For any given weights and any minimal expected performance levels, the

weighted total expected performance is maximized only if the players are separated.

The proof is similar to that of Proposition 1, so it is omitted. Now we consider the

optimal prize structure. Problem in (6) becomes

max
V1,..,VT

T∑
t=1

αtVt/ct

s.t.
T∑
t=1

Vt = 1

Vt/(ctnt) ≥ rt for every t

If αt/ct < αt′/ct′ for some t′ 6= t, it is optimal to minimize Vt, so Vt = ctntrt, which is

just enough to maintain the minimal performance requirement. In addition, we also need

to ensure the minimal performance requirements for each individual player. Recall that

Lemma 4 implies each player in a contest of identical players exhibits the same expected

performance. Therefore, in order to ensure the minimal performance requirements are

met, the per capita prize should be at least ctrt in each contest containing t-type play-

ers. Based on the analysis above, the proposition below characterizes the optimal prize

structures that solve the planner’s problem.

Proposition 5 A prize structure is optimal for separated players if and only if all of the

following conditions hold: i) all the prizes except the lowest are positive in each contest, ii)

the total value of prizes in all the contests of t-type players is Vt = ctntrt if αt/ct < αt′/ct′

for some t′ 6= t, and iii) the total value of prizes in a contest containing kt t-type players

is at least ctktrt.

Remark 4 It is worth mentioning that, given the optimal partition and prize structure,

the previous no-child-left-behind requirement is also satisfied.
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5.2 Distinct Abilities

This section relaxes the assumption nt ≥ 2 and considers players with distinct marginal

costs. In particular, suppose that there are four players with marginal costs 0 < c1 <

c2 < c3 < c4. Moreover, αt = 1/4 for t = 1, 2, 3 and 4, which means the planner wants to

maximize the total expected performance. Because it is never optimal to have one player

in a contest, there are three ways to split the players into two contests: ({1, 2}, {3, 4}),
({1, 3}, {2, 4}) and ({1, 4}, {2, 3}). Let vij be the prize in the contest of players {i, j}.
For simpler analysis, we remove the no-child-left-behind and no-extreme-prize-allocation

requirements, although the analysis is similar with these requirements. The following

proposition characterizes the optimal partition and prize structure.

Proposition 6 Consider four players with marginal costs c4 > c3 > c2 > c1 > 0.

If c2+c3
c23

> max
(

c1+c2
c22

, c3+c4
c24

)
, the optimal partition is ({1, 4}, {2, 3}) and the optimal

prize structure satisfies v14 = 0 and v23 = 1.

If c2+c3
c23

< max
(

c1+c2
c22

, c3+c4
c24

)
, the optimal partition is ({1, 2}, {3, 4}) and the optimal

prize structure satisfies v12 = 1 if c1+c2
c22

> c3+c4
c24

and v34 = 1 if c1+c2
c22

< c3+c4
c24

.

The proof is in the appendix. The proposition implies that players with similar

abilities should be grouped together, which may or may not be the same as separating

the lower abilities from the higher abilities. To see why they may be the same, consider

fixed c1 and c4. If c2 converges to c1 and c3 converges to c4, Proposition 6 implies that

the similar players should be grouped together: ({1, 2}, {3, 4}), where the higher ability

players are separated from the lower ability ones. In contrast, for fixed c1 and c4, if c2

and c3 converge to (c1 + c4)/2, Proposition 6 implies that it is optimal to assign players

2 and 3 into one contest and players 1 and 4 into another. Therefore, separating higher

ability players from the lower ability ones is not optimal.

It would be an interesting extension to consider the optimal grouping problem for

more than four players whose marginal costs are all different. As in Proposition 6, the

optimal grouping would depend on the distribution of costs. Moreover, since each contest

inevitably has asymmetric players, it is very important to characterize the equilibria in

asymmetric contests with heterogeneous prizes, which to our knowledge is still an open

question. Similarly, extending the model to accommodate constraints on the maximum

number of contests or on the number of participants in each contest would lead to the

same difficulty in equilibrium characterization.

5.3 Heterogeneous Valuations

Our analysis can be generalized to heterogeneous valuation of the same prize. Consider

a contest with players 1, ..., n and prizes v1 ≥ ... ≥ vn ≥ 0. Player i is characterized
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by (di, xi) ∈ R2
++. His value of the kth prize is divk for k = 1, ..., n, and his marginal

performance cost is xi. Parameters d1, ..., dn represent players’ heterogeneous values.

Consider another contest with n players and the same prizes. In this contest, player i

has marginal cost ĉi ≡ xi/di and his value of the kth prize is vk. Then, the contest is

the same as in Section 2. Given the same prize, the payoff of player with (di, xi) in the

first contest is the payoff of player ĉi in the second contest multiplied by di. Therefore,

the two contests have the same set of equilibria. Hence, we can replace ci in Section 2 by

xi/di, and the analysis remains the same.

5.4 Alternative Objectives of the Planner

Our analysis applies to other objectives of the planner. Suppose T = 2, so there are two

ability types. Suppose the planner’s objective is

max
(P,V)∈Φ

(S1 + S2)− β|S1/n1 − S2/n2| (7)

subject to (2) and (3), where β ∈ (0, 1). This means that the planner wants to maximize

the total expected performance and she also wants to minimize the difference in the

average performance across groups. Because β < 1, maximizing total performance is

more important than minimizing the performance gap. Chan and Eyster (2003) study a

similar objective in a study of college admission policies. We can verify that (7) subject

to (2) and (3) has the same optimal partition and prize structure as either max(1 −
β/n1)S1 + (1 +β/n2)S2 subject to (2) and (3) or max(1 +β/n1)S1 + (1−β/n2)S2 subject

to (2) and (3). In either case, we transform (7) into a problem as in (1), so the analysis

in Section 2 applies.

5.5 Application to Sports

Besides education, the results in this paper are also applicable to a variety of competitions.

For instance, in the early nineteenth century, there were no weight classes in boxing. Then

eight weight classes were introduced before the Second World War, and nine more were

introduced afterwards. The history of other sports such as weightlifting and wrestling

also shares similar trend. The heavier athletes have an obvious advantage in strength,

so why would we want to group players with similar abilities into the same class and let

them compete only within their class? This takes fairness into consideration, and our

results suggest that separating athletes according to their abilities could also increase

their effort and therefore make matches more entertaining.
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Appendix

Proof of Lemma 2. We first claim that, if two or more players have an atom at

performance level s in an equilibrium, all the players who have an atom at s lose with

certainty.14 Let us prove it by contradiction. Suppose that two players, i and j, have an

atom at performance level s in an equilibrium, and suppose that player i wins a prize with

positive probability by choosing s. Since the tie is broken in such a way that everyone

involved wins with positive probability, player j also wins a prize with positive probability

by choosing s. In addition, the tie breaking rule ensures that player i loses with positive

probability by choosing s, so he does not win the highest prize with probability 1. In

contrast, if player j increases his performance slightly above s, his cost is almost the same

but his expected winnings would have a discontinuous increase. This is because he no

longer needs to share any prize with player i. This is a deviation for player j, which is a

contradiction.

We prove Lemma 2 in two steps. First, suppose two players have an atom at perfor-

mance level s in the equilibrium, then the above claim implies that both of them must

lose with certainty by choosing s. Second, suppose only player i has an atom at s, and

suppose he wins a prize with positive probability. On the one hand, if all other players

have no best response in (s−ε, s) for some ε > 0, player i would benefit from lowering the

atom to s−ε. This is a contradiction. On the other hand, suppose another player j has a

sequence of best responses converging to s from below. Compared to such a best response

close to s, performance slightly above s imposes an almost identical cost on player j, but

the resulting expected winnings would have a discontinuous increase because of player i’s

atom at s. This is also a contradiction. In sum, player i loses with certainty by choosing

performance level s, which completes the proof.

Proof of Lemma 7. We first show that the lowest performance in the supports of the

mixed strategies must be zero. To see why, given any equilibrium, let s be the lowest

performance in the union of all strategies’ supports in the equilibrium. Then, at least one

player’s strategy has s as the lower bound of its support. If s > 0, this player wins the

lowest prize with performance s. On the other hand, he could also win the same prize

with performance 0, which incurs a lower cost. This is a contradiction. As a result, we

must have s = 0, so the payoff of this player equals the lowest prize.

Next, we show that that all players have the same payoff. To see this, if the prizes

are identical, everyone receives the same prize, hence the lemma is true. Suppose the

prizes are not identical. In addition, suppose that in an equilibrium, player i’s payoff

is lower than player j’s. Let s̄j be the highest performance in the support of player j’s

14This result is referred to as the Tie Lemma by Siegel (2009).
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mixed strategy and s̄i be the counterpart for i. Lemma 3 implies that player i’s expected

winnings with performance s̄j is no lower than player j’s. In addition, notice that both

players have the same marginal cost, so player i’s payoff at s̄j is no lower than that of j

at s̄j. This contradicts the assumption that player j’s payoff is higher than i’s. Thus, all

the players have the same payoff, and denote it as ut.

Recall that s = 0, so at least one player, say i, has a equilibrium strategy Gm
i with s =

0 being the lower bound of its support. Then, given other players equilibrium strategies

Gm
−i, player i’s payoff from choosing s = 0 is ut = vm+µt

∑
j 6=i E[sj], where E[sj] is player

j’s expected performance given his equilibrium strategy Gm
j . By the definition of player i’s

payoff, we have E[W (Gm
−i(si),v

m)]+µt

∑
j 6=i E[sj]−ctE[si] = ut, where E[W (Gm

−i(si),v
m)]

is player i’s expected winnings in the equilibrium. Substituting ut = vm + µt

∑
j 6=i E[sj]

into the above equation, we can rewrite it as E[W (Gm
−i(si),v

m)]− ctE[si] = vm. Because

the total value of prizes equals the total winnings, aggregating the above equation across

all players implies V m − ctSm = vm|Pm| or Sm = (V m − vm|Pm|)/ct.

Proof of Lemma 8. Given others’ equilibrium strategies Gm
−l, player l can always

deviate to non-performance and obtain a payoff no lower than vm+
∑

j 6=l E[sj]. Therefore,

every player’s equilibrium payoff satisfies ul ≥ vm + µl

∑
j 6=l E[sj].

Suppose ul = vm + µl

∑
j 6=l E[sj] for all players. Then, given others’ equilibrium

strategies, if player i chooses performance si in the support of his equilibrium strategy,

he obtains his equilibrium payoff:

W (Gm
−i(si),v

m)− cisi + µi

∑
j 6=i

E[sj] = ui (8)

Suppose players i and j have different costs, with ci > cj. Then, as in the proof of Lemma

5, if player j chooses s̄i, his expected winnings are no lower than i’s, but his cost is lower

than i’s, so

W (Gm
−i(s̄i),v

m)− cis̄i < W (Gm
−j(s̄i),v

m)− cj s̄i (9)

Notice that the left hand side equals ui − µi

∑
l 6=i E[sl] due to (8). In addition, the right

hand side cannot be higher than uj − µj

∑
l 6=j E[sl], otherwise player j receives a payoff

higher than his equilibrium payoff from choosing s̄i. Hence, (9) implies ui−µi

∑
l 6=i E[sl] <

uj−µj

∑
l 6=j E[sl], which contradicts the assumption ul = vm+µl

∑
j 6=l E[sj] for all players

l.

Proof of Proposition 3. As in the proof of Proposition 1, we first discuss the

performance outcomes under mixing, and then show that they are dominated by the

outcomes under separating. Suppose the players are mixed. Because of spillovers, (5)

no longer holds. Therefore, we have to modify the proof of Proposition 1. Specifically,
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consider a contest with mixed types and an equilibrium in which restrictions (2) and (3)

are satisfied. Equation (8) implies E[W (Gm
−i(si),v

m)]− ciE[si] + µi

∑
j 6=i E[sj] = ui, or

E[si] = {E[W (Gm
−i(si),v

m)] + µi

∑
j 6=i

E[sj]− ui}/ci (10)

According to Lemma 8, we have µi

∑
j 6=i E[sj] + vm − ui ≤ 0. Notice that vm ≥ 0, so we

also have

µi

∑
j 6=i

E[sj]− ui ≤ 0 (11)

for all i and the inequality is strict for at least one player. Then, (10) and (11) imply

E[si] ≤ E[W (Gm
−i(si),v

m)]/ci for all i, and for at least one player the inequality is strict.

Recall that Wt is the total expected winnings of t-type players and St their total expected

performance, so St ≤ Wt/ct for all t, and for at least one type the inequality is strict.

Suppose that the planner separates the players into T contests, so each contest con-

tains all the players of a particular type. In addition, suppose she assigns prizes of total

value Wt to the contests with t-type players and all the prizes except the lowest are

positive. It is straightforward to verify that requirements (2) and (3) are satisfied. In

addition, Lemma 7 implies the total expected performance of the t-type contest is Wt/ct

for all t. Hence, as in the proof of Proposition 1, we can verify that the resulting per-

formance outcome dominates the outcome (S1, S2, ..., ST ) under mixing. As a result, the

weighted total performance is never maximized if the players are mixed.

Proof of Proposition 6. Suppose the partition is ({1, 2}, {3, 4}), which means players

1 and 2 are in one contest, and players 3 and 4 in another. Then, players 1 and 2 compete

in a contest for a prize of v12 ∈ (0, 1), and players 3 and 4 compete in the other contest for

a prize of 1−v12. The equilibrium payoffs are u1 = v12 (1− c1/c2) for player 1 and u2 = 0

for player 2. The equilibrium strategies are G1(s) = c2s/v12 and G2(s) = (u1 + c1s)/v12.

Hence, the expected performance of the two players are

E[s1] =

∫ v12/c2

0

sdG1(s) =
v12

2c2

E[s2] =

∫ v12/c2

0

sdG2(s) =
v12c1

2c2
2

Similarly, the expected performance for players 3 and 4 are E[s3] = (1− v12) /(2c4) and

E[s4] = (1− v12)c3/(2c
2
4). Therefore, the maximum total expected performance given the
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partition is

Π12,34 = max
v12∈[0,1]

(
v12

2

c1 + c2

c2
2

+
1− v12

2

c3 + c4

c2
4

)
=

1

2
max

(
c1 + c2

c2
2

,
c3 + c4

c2
4

)
Similarly, the maximum expected performance with other partitions are

Π13,24 = max
v13∈[0,1]

(
v13

2

c1 + c3

c2
3

+
1− v13

2

c2 + c4

c2
4

)
=

1

2
max

(
c1 + c3

c2
3

,
c2 + c4

c2
4

)

Π14,23 = max
v14∈[0,1]

(
v14

2

c1 + c4

c2
4

+
1− v14

2

c2 + c3

c2
3

)
=

1

2
max

(
c1 + c4

c2
4

,
c2 + c3

c2
3

)
Hence, the maximum expected performance across all partitions is

max (Π12,34,Π13,24,Π14,23)

=
1

2
max

(
c1 + c2

c2
2

,
c3 + c4

c2
4

,
c1 + c3

c2
3

,
c2 + c4

c2
4

,
c1 + c4

c2
4

,
c2 + c3

c2
3

)
=

1

2
max

(
c1 + c2

c2
2

,
c3 + c4

c2
4

,
c2 + c3

c2
3

)
where the second equality comes from c1+c3

c23
< c2+c3

c23
and c1+c4

c24
< c2+c4

c24
< c3+c4

c24
. Therefore,

partition ({1, 3}, {2, 4}) is never optimal. Moreover, if c2+c3
c23

> c1+c2
c22

and c2+c3
c23

> c3+c4
c24

,

Π14,23 > Π12,34. Otherwise, Π14,23 ≤ Π12,34.

Proposition 7 Suppose player it of t-type has a marginal cost ct + εit > 0, where εit

represents the idiosyncratic shock and is commonly known. Then, for any weights, there

exists an ε > 0 such that if maxit∈N |εit | < ε, the total weighted expected performance is

maximized only if the players are separated.

Proof. Let us first show the counterpart of Lemma 4: If all the players in a contest are

of the same type, their players’ payoffs converge to the value of the lowest prize in any

equilibrium as maxit∈N |εit | goes to zero. To see why, notice that the player with the

highest marginal cost, say player n, has a payoff that equals the lowest prize. According

to Lemma 3, player n can ensure himself expected winnings no less than that of player i’s

at performance level s̄i, player i’s highest performance in the support of his strategy. As

a result, if players n and i’s costs converge towards each other, player n’s payoff cannot

be lower than i’s in the limit. Since no player’s equilibrium payoff can be lower than the

lowest prize, the payoffs of player i and n must be the same and equal to the lowest prize

in the limit.

Let us now show the counterpart of Lemma 5: If not all the players in a contest have

identical types and not all the prizes have identical values, at least one player’s payoff is

higher than and bounded away from the lowest prize in any equilibrium as maxit∈N |εit |
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goes to zero. To see this, suppose players i and j have different cost types, then their

costs in the limit are also different: ci > cj. In addition, suppose that they have the same

equilibrium payoff in the limit, that is, ui = uj. According to Lemma 3, player j can

ensure himself expected winnings no lower than that of player i’s at performance level s̄i.

Therefore, player j can ensure himself a payoff higher than i’s by choosing s̄i because j

has a lower cost in the limit. This is a contradiction.

Given the counterparts of Lemmas 4 and 5, we can prove Proposition 7 in the exact

same way as we prove Proposition 1.
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